Termination and Completion Modulo Associativity, Commutativity and Identity
نویسندگان
چکیده
Rewriting with associativity, commutativity and identity has been an open problem for a long time. In 1989, Baird, Peterson and Wilkerson introduced the notion of constrained rewriting, to avoid the problem of non-termination inherent to the use of identities. We build up on this idea in two ways: by giving a complete set of rules for completion modulo these axioms; by showing how to build appropriate orderings for proving termination of constrained rewriting modulo associativity, commutativity and identity.
منابع مشابه
Termination Modulo Combinations of Equational Theories (Long Version)
Rewriting with rules R modulo axioms E is a widely used technique in both rule-based programming languages and in automated deduction. Termination methods for rewriting systems modulo specific axioms E (e.g., associativity-commutativity) are known. However, much less seems to be known about termination methods that can be modular in the set E of axioms. In fact, current termination tools and pr...
متن کاملTermination Modulo Combinations of Equational Theories
Rewriting with rules R modulo axioms E is a widely used technique in both rule-based programming languages and in automated deduction. Termination methods for rewriting systems modulo specific axioms E (e.g., associativity-commutativity) are known. However, much less seems to be known about termination methods that can be modular in the set E of axioms. In fact, current termination tools and pr...
متن کاملA Church-Rosser Checker Tool for Conditional Order-Sorted Equational Maude Specifications
The (ground) Church-Rosser property, together with termination, is essential for an equational specification to have good executability conditions, and also for having a complete agreement between the specification’s initial algebra, mathematical semantics, and its operational semantics by rewriting. Checking this property for expressive specifications that are order-sorted, conditional with po...
متن کاملPartial Evaluation of Order-Sorted Equational Programs Modulo Axioms
Partial evaluation (PE) is a powerful and general program optimization technique with many successful applications. However, it has never been investigated in the context of expressive rule-based languages like Maude, CafeOBJ, OBJ, ASF+SDF, and ELAN, which support: 1) rich type structures with sorts, subsorts and overloading; 2) equational rewriting modulo axioms such as commutativity, associat...
متن کاملIncremental Checking of Well-Founded Recursive Speci cations Modulo Axioms
We introduce the notion of well-founded recursive order-sorted equational logic (OS) theories modulo axioms. Such theories de ne functions by well-founded recursion and are inherently terminating. Moreover, for well-founded recursive theories important properties such as con uence and su cient completeness are modular for so-called fair extensions. This enables us to incrementally check these p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Theor. Comput. Sci.
دوره 104 شماره
صفحات -
تاریخ انتشار 1992